pylops_gpu.MatrixMult

class pylops_gpu.MatrixMult(A, dims=None, device='cpu', togpu=(False, False), tocpu=(False, False), dtype=torch.float32)[source]

Matrix multiplication.

Simple wrapper to torch.matmul for an input matrix \(\mathbf{A}\).

Parameters:
A : torch.Tensor or pytorch_complex_tensor.ComplexTensor or numpy.ndarray

Matrix.

dims : tuple, optional

Number of samples for each other dimension of model (model/data will be reshaped and A applied multiple times to each column of the model/data).

device : str, optional

Device to be used

togpu : tuple, optional

Move model and data from cpu to gpu prior to applying matvec and rmatvec, respectively (only when device='gpu')

tocpu : tuple, optional

Move data and model from gpu to cpu after applying matvec and rmatvec, respectively (only when device='gpu')

dtype : torch.dtype or np.dtype, optional

Type of elements in input array.

Notes

Refer to pylops.basicoperators.MatrixMult for implementation details.

Attributes:
shape : tuple

Operator shape

explicit : bool

Operator contains a matrix that can be solved explicitly (True) or not (False)

Methods

__init__(A[, dims, device, togpu, tocpu, dtype]) Initialize this LinearOperator.
adjoint() Hermitian adjoint.
apply_columns(cols) Apply subset of columns of operator
cond([uselobpcg]) Condition number of linear operator.
conj() Complex conjugate operator
div(y[, niter, tol]) Solve the linear problem \(\mathbf{y}=\mathbf{A}\mathbf{x}\).
dot(x) Matrix-vector multiplication.
eigs([neigs, symmetric, niter, uselobpcg]) Most significant eigenvalues of linear operator.
inv() Return the inverse of \(\mathbf{A}\).
matmat(X[, kfirst]) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatmat(X[, kfirst]) Adjoint matrix-matrix multiplication.
rmatvec(x) Adjoint matrix-vector multiplication.
todense([backend]) Return dense matrix.
toimag([forw, adj]) Imag operator
toreal([forw, adj]) Real operator
tosparse() Return sparse matrix.
transpose() Transpose this linear operator.
inv()[source]

Return the inverse of \(\mathbf{A}\).

Returns:
Ainv : torch.Tensor

Inverse matrix.